two-parameter distribution - definitie. Wat is two-parameter distribution
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:     

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is two-parameter distribution - definitie

LIE GROUP HOMOMORPHISM FROM THE REAL NUMBERS
One-parameter subgroup; 1-parameter subgroup; 1-parameter group; One parameter group

Statistical parameter         
QUANTITY THAT INDEXES A PARAMETRIZED FAMILY OF PROBABILITY DISTRIBUTIONS
Numerical parameter; Population parameter; Statistical measure; Numeric parameter; Statistical parameters; True value
In statistics, as opposed to its general use in mathematics, a parameter is any measured quantity of a statistical population that summarises or describes an aspect of the population, such as a mean or a standard deviation. If a population exactly follows a known and defined distribution, for example the normal distribution, then a small set of parameters can be measured which completely describes the population, and can be considered to define a probability distribution for the purposes of extracting samples from this population.
Parameter (computer programming)         
IN COMPUTER PROGRAMMING, SPECIAL KIND OF VARIABLE THAT HOLDS DATA THAT WAS PASSED AS AN ARGUMENT TO A SUBROUTINE
Argument (computer science); Argument (programming); Parameter (programming); Formal parameter; Actual parameter; Parameters (computer science); Formal parameters; Function parameter; Argument (computing); Parameter (computer science); Parameter (computing); Output parameter; Out parameter; Return parameter; Argument (computer programming); Input parameter; Input value; Output value; Actual parameters
In computer programming, a parameter or a formal argument is a special kind of variable used in a subroutine to refer to one of the pieces of data provided as input to the subroutine. These pieces of data are the values of the arguments (often called actual arguments or actual parameters) with which the subroutine is going to be called/invoked.
Kent distribution         
PROBABILITY DISTRIBUTION ON THE TWO-DIMENSIONAL UNIT SPHERE EMBEDDED IN THREE DIMENSIONAL REAL NUMBERS
Fisher-Bingham distribution; Fisher–Bingham distribution
In directional statistics, the Kent distribution, also known as the 5-parameter Fisher–Bingham distribution (named after John T. Kent, Ronald Fisher, and Christopher Bingham), is a probability distribution on the unit sphere (2-sphere S2 in 3-space R3).

Wikipedia

One-parameter group

In mathematics, a one-parameter group or one-parameter subgroup usually means a continuous group homomorphism

φ : R G {\displaystyle \varphi :\mathbb {R} \rightarrow G}

from the real line R {\displaystyle \mathbb {R} } (as an additive group) to some other topological group G {\displaystyle G} . If φ {\displaystyle \varphi } is injective then φ ( R ) {\displaystyle \varphi (\mathbb {R} )} , the image, will be a subgroup of G {\displaystyle G} that is isomorphic to R {\displaystyle \mathbb {R} } as an additive group.

One-parameter groups were introduced by Sophus Lie in 1893 to define infinitesimal transformations. According to Lie, an infinitesimal transformation is an infinitely small transformation of the one-parameter group that it generates. It is these infinitesimal transformations that generate a Lie algebra that is used to describe a Lie group of any dimension.

The action of a one-parameter group on a set is known as a flow. A smooth vector field on a manifold, at a point, induces a local flow - a one parameter group of local diffeomorphisms, sending points along integral curves of the vector field. The local flow of a vector field is used to define the Lie derivative of tensor fields along the vector field.